

Single-wire 256-level grayscale three-

channel constant current LED driver IC

Main features •

OUTR, G, B and DOUT ports withstand voltage 20V, DIN port withstand voltage 9.5V. • The chip has a built-

in voltage regulator tube, and the power supply terminal below 24V only needs to connect a series resistor to the VDD pin, and no external

voltage regulator tube is required. • Chip built-in resistors, DIN and DOUT ports have overvoltage protection, short circuit 24V instantly will

not burn out. • Gray scale adjustment circuit (256 levels of gray

scale adjustable). • Built-in signal shaping circuit, after any IC receives a signal, it will be output after wave shaping to ensure that line wave distortion will not accumulate. •

Built-in power-on reset and power-off reset circuits. • The

PWM control terminal can realize 256 levels of adjustment, and the scanning frequency is 4KHz.

• Serial interface cascade interface, which can complete data reception and decoding through one signal line. • The

transmission distance between any two points does not exceed 4 meters without adding

any circuits. • When the refresh rate is 30 frames per second, the cascade number is

not less than 1024 points. • Data sending speed can reach 800Kbps.

Main application fields • LED

full-color luminous character light strings, LED full-color modules. •

LED full-color flexible light bar hard light bar, LED guardrail tube. •

LED point light source, LED pixel screen, LED special-shaped

screen. • A variety of electronic products, electrical

equipment marquee. • Various other LED lighting products.

product description

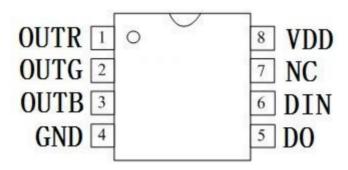
WS2811 is a special circuit for three-channel LED drive control. The chip contains an intelligent digital interface data latch signal shaping and amplifying drive circuit, as well as a high-precision internal oscillator and a 20V high-voltage programmable constant current output driver. At the same time, in order to reduce the power ripple, the OUTR, G, and B channels have a delay conduction function, which can reduce the circuit ripple when the frame is refreshed.

The chip adopts the single-wire return-to-zero code communication method. After the chip is powered on and reset, the DIN terminal receives the data transmitted from the controller. The 24bit data sent first is extracted by the first chip and sent to the data latch inside the chip. After being reshaped and amplified by the internal shaping processing circuit, the remaining data is forwarded and output to the next cascaded chip through the DO port. Every time a chip is transmitted, the signal is reduced by 24 bits. The chip adopts automatic shaping and forwarding technology, so that the cascade number of the chip is not limited by signal transmission, but only limited by the signal transmission speed requirements.

The data latch inside the chip generates different duty cycle control signals at the OUTR, OUTG, and OUTB control terminals according to the received 24bit data.

When waiting for the DIN terminal to input the RESET signal, all chips will send the received data to each segment synchronously, and the chip will re-receive the data after the signal ends, and after receiving the first 24bit data, forward the data port through the DO port, before the chip receives the RESET code, OUTR, OUTG,

The original output of the OUTB pin remains unchanged. After receiving the low-level RESET code of more than 280ÿs, the chip outputs the 24bit PWM data pulse width just received to the OUTR, OUTG, and OUTB pins.


Available in SOP8, MSOP8, FSOP8 packages.

Single-wire 256-level grayscale three-

channel constant current LED driver IC

Terminal Arrangement

Lead function

serial number	symbol	Pin name	Functional description
1	OTHER	LED driver output	RED (red) PWM control output
2	OUTG	LED driver output	GREEN (green) PWM control output
3	OUTB	LED driver output	BLUE (blue) PWM control output
4	GND	land	Signal Ground and Power Ground
5	DO	data output	show data cascade output
6	FROM	data input	show data entry
7	NC	Empty pin	Empty pin
8	VDD	logic power	IC power supply

Maximum rating (TA=25ÿ, VSS=0V)

parameter	symbol	scope	unit
Logic supply voltage	VDD	+3.5~+5.7	IN
R, G, B output port withstand voltage	VOUT	20	IN
Logic input voltage	WE	VDD-0.7ÿVDD+0.7V	IN
Operating temperature	Тор	-40ÿ+85	ÿ
Storage temperature	Tstg	-40~+105	ÿ

Single-wire 256-level grayscale three-

channel constant current LED driver IC

Electrical parameters (TA=25ÿ, VDD=4.5ÿ5.5V, VSS=0V)

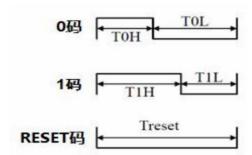
parameter Symbol M		inimum Typical	Maximum Uni	t		Test Conditions
Quiescent Current	This	0.3		mA		DC=5V
RÿGÿB IOL Low level output current		15.5	16.5	17.5	mA DC=5	sV, DINÿFFHÿ
Single RGB current different	ence Dif	0	_	0.8	mA	DC=5V, DIN
Low level output current	ldout	10		mA		Vo=0.4VÿDOUT
Signal input current	П			±1	μA	VI=VDD/VSS
High level input	HIV	0.55VDD —			IN	FROM
low level input	WILL	0.3 VDD			IN	FROM
hysteresis voltage	VH	0.35 -			IN	FROM

Switching characteristics (TA=25ÿ, VDD=4.5ÿ5.5V, VSS=0V)

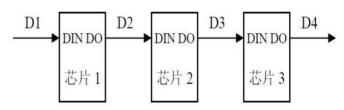
parameter	Symbol N	/linimum Typ	ical Maximuı	m Unit		Test Conditions
Oscillation frequency	Dark —	- 800 —— K⊦	z			-
Transmission delay time tPLZ — —		— 300			ns	CL=15pF, DINÿDOUT, RL=10Kÿ
fall time	tTHZ —	_ —— 120			μs	CL=300pF, OUTR/OUTG/OUTB
Data transfer rate FMAX		600 — –	– — Kbps dut	y cycle 50%		
input capacitance	CI ——	—— 15			pF	-

data transfer time

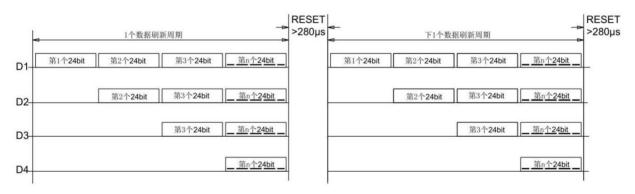
ТОН	0 yards, high time	220ns~380ns
T1H	1 yard, high time	580ns~1us
TOL	0 yards, low time	580ns~1us
T1L	1 yard, low time	580ns~1us
RES Frame unit, low level time		280 µs or more



Single-wire 256-level grayscale three-


channel constant current LED driver IC

Timing Waveform



connection method:

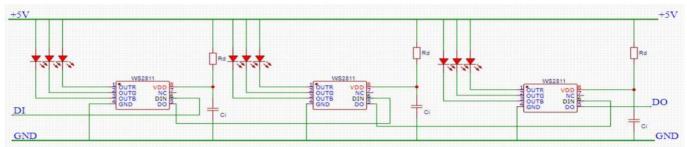
data transfer method

Note: D1 is the data sent by the MCU, D2, D3, and D4 are the data automatically reshaped and forwarded by the cascade circuit.

24bit data structure

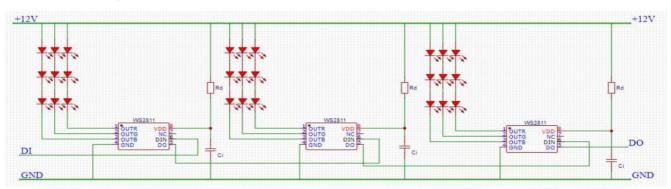
R7 R6 R5 R4 R3 R2 R1 R0 G7 (6 G5 G4 G3 G2	31 G0 B7 B6 B5 B4 B3	B2 B1 B0	

Note: The high bit is sent first, and the data is sent in the order of RGB.

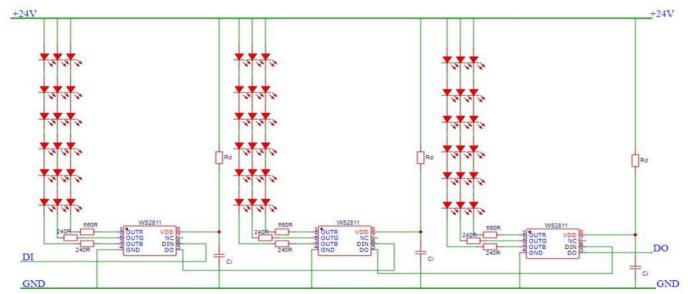

Single-wire 256-level grayscale three-

channel constant current LED driver IC

Typical Application Circuit


1. Reference circuit for **5V** power supply application (each channel has **1** LED): The

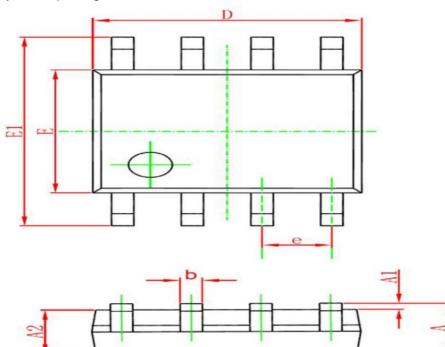
recommended value of Rd is 150R, and the recommended value of Ci is 1uf.

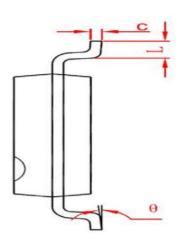

2. Reference circuit for 12V power supply application (each channel has 3 LEDs): The

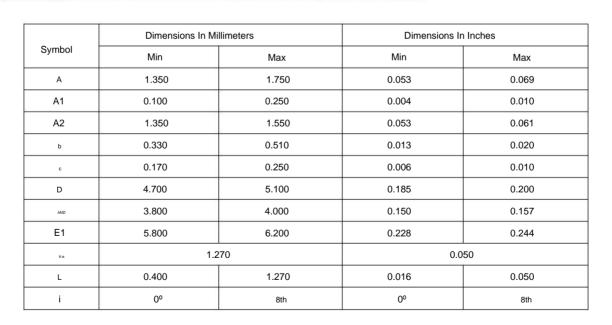
recommended value of Rd is 4.7k, and the recommended value of Ci is 1uf.

3. Reference circuit for 24V power supply application (each channel has 6 LEDs):

The recommended value for Rd is 10k, and the recommended value for Ci is 1uf.

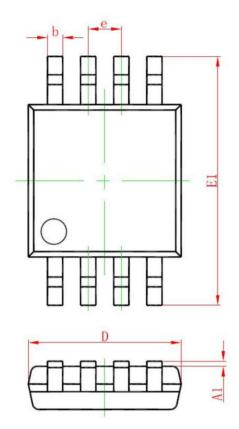


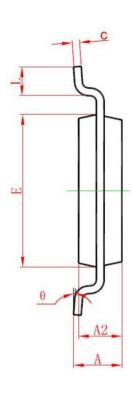

Single-wire 256-level grayscale three-


channel constant current LED driver IC

Package Diagram and Parameters

ÿ SOP8 package

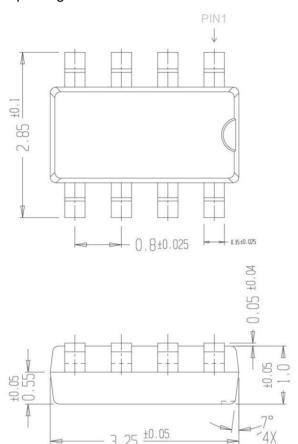


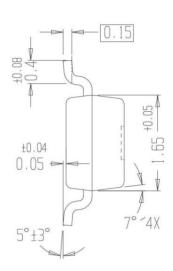


Single-wire 256-level grayscale three-

channel constant current LED driver IC

ÿ **MSOP8** package


0	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	0. 820	1. 100	0. 032	0. 043
A1	0. 020	0. 150	0. 001	0. 006
A2	0. 750	0. 950	0. 030	0. 037
b	0. 250	0. 380	0. 010	0. 015
С	0.090	0. 230	0. 004	0.009
D	2. 900	3. 100	0. 114	0. 122
е	0.650	(BSC)	0.026	(BSC)
E	2. 900	3. 100	0. 114	0. 122
E1	4. 750	5. 050	0. 187	0. 199
L	0. 400	0.800	0. 016	0. 031
θ	0°	6°	0°	6°



Single-wire 256-level grayscale three-

channel constant current LED driver IC

• FSOP8 package

File Change Record Version

Number Status	ò	Summary of revisions	Revised Date Revi	sed By Approve	er
V1.0	N	new build	20170524 Shen Jir	nguo Yin Huapir	ng
V1.1	М	maximum rating	20171014 Shen Jir	nguo Yin Huapii	ng
V1.2	М	Switching characteristics	20171108 Shen Jir	nguo Yin Huapir	ng
V1.3	M Maxim	um ratings, data transmission time, main features, product overview 2018-2-7 Shen	Jinguo Yin Huaping		
V1.4	М	T1L time modification, standard logic input voltage	2018-9-10 Shen Jir	nguo Yin Huapir	ng
V1.5	М	Modify the typical application circuit diagram (supplement 24V application circuit)	2018-9-20 Shen Jir	nguo Yin Huapir	ng
V1.6	М	RGB port 12V full withstand voltage test, add Dif test	2021-12-31 Yu Xing	hui Yin Huapinç	9
v2.0	М	Driver IC upgrade	2022-10-10 Yu Xing	hui Yin Huapin	9
v2.1	М	Add FSOP8 package	2022-11-11 Yu Xing	hui Yin Huaping	9