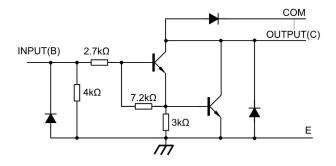

DESCRIPTION

The WD2001 is a monolithic high voltage and high current Darlington transistor arrays. It consists of three NPN darlington pairs that features high-voltage outputs with common-cathode clamp diode for switching inductive loads. The collector-current rating of a single darlington pair is 500mA. The darlington pairs may be parrileled for higher current capability. Applications include relay drivers, hammer drivers, lampdrivers, display drivers(LED gas discharge), line drivers, and logic buffers. The WD2001 has a 2.7k series base resistor for each darlington pair for operation directly with TTL or 5V CMOS devices.

FEATURES PACKA LOGIC DIAGRAM

- 500mA rated collector current(Single output)
- High-voltage outputs: 50V
- Inputs compatibale with various types of logic.



APPLICATION

- Relay drivers
- Lamp drivers
- Display drivers
- LED gas discharge
- Line drivers
- Logic buffers
- Hammer drivers

SCHEMATIC(EACH DARLINGTON PAIR)

ORDERING INFORMATION

DEVICE	MARKING	PACKAGE
WD2001	WD2001	SOP-8-225-1.27

Wade Semiconductor Co,LTD

Rev: V1.1

www.wadesemi.com

ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

Characteris	tic	Symbol	Value	Unit	
Colletor-Emitter Voltage(p	oin6-8)	V _{CE}	50	V	
COM Voltage(pin5)		V _{com}	50	V	
Input Voltage(pin1-3)		Vı	12	V	
Peak Collector Current		I _{CP}	500	mA	
Total Emitter-terminal		I _{OK}	500	mA	
Maximum peak current of	total emitter	I _{ET}	-1	Α	
Packaging Thermal	DIP-8	I _{ET}	160	°C 0.4.1	
Impedance ^{(1) (2) (3)}	SOP-8	θ_{JA}	100	°C/W	
Junction Temperatrure (2)		TJ	150		
Welding Temperature			260	°C	
Storage Temperature		T _{stg}	-65 ~ +150	℃	

Note: (1) Calculation of Maximum Power Consumption Relation: P_D=(T_J-T_A)/θ_{JA}

(3) Calculating Method of Packaging Thermal Resistance JESD51-7

RECOMMENDED WORKING CONDITIONS(Ta=25°C)

Characteristic		Symbol	Test Conditions	Min.	Max.	Unit	
Output current		I _{OUT}	Continuous output, T _A = +85°C		100	mA/ch	
Input voltage		V _{IN}		0	12	V	
Input voltage(Output ON)		V _{IN(ON)}	lout=400mA, hFE=800	2.8	12	V	
Input voltage(Output OFF)		V _{IN(OFF)}		0	0.7	V	
Clamp diode reverse voltage		V _R			50	V	
Forward Current of Clamp Diode		l _F			350	mA	
Operating temperature		T _A		-40	+85	°C	
Junction Temperatrure		TJ		-20	125	$^{\circ}$	
Dissipative Power Consumption	SOP8	P _D	TA= +25℃		0.625	· W	
			TA= +85℃		0.25		
	DIP8	P _D	TA=+25℃		1		
			TA= +85℃		0.4		

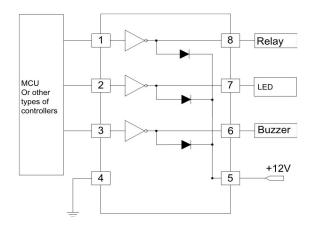
Note: $1 \cdot T_A$ Indicates the ambient temperature at which the circuit operates.

- $2. \ \ Calculation \ Method \ of \ Circuit \ Power \ Consumption: \\ P_D = V_{CE(ON)1} \times I_{C1} + V_{CE(ON)2} \times I_{C2} + V_{CE(ON)3} \times I_{C3} + V_{IN1} \times I_{IN1} + V_{IN2} \times I_{IN2} + V_{IN3} \times I_{IN3}; \\ P_D = V_{CE(ON)1} \times I_{C1} + V_{CE(ON)2} \times I_{C2} + V_{CE(ON)3} \times I_{C3} + V_{IN1} \times I_{IN1} + V_{IN2} \times I_{IN2} + V_{IN3} \times I_{IN3}; \\ P_D = V_{CE(ON)2} \times I_{C2} + V_{CE(ON)3} \times I_{C3} + V_{IN1} \times I_{IN1} + V_{IN2} \times I_{IN2} + V_{IN3} \times I_{IN3}; \\ P_D = V_{CE(ON)3} \times I_{C1} + V_{CE(ON)3} \times I_{C2} + V_{CE(ON)3} \times I_{C3} + V_{IN1} \times I_{IN2} + V_{IN3} \times I_{IN3}; \\ P_D = V_{CE(ON)3} \times I_{C1} + V_{CE(ON)3} \times I_{C2} + V_{CE(ON)3} \times I_{C3} + V_{CE(ON)3} \times I_{C3}$
- 3. In Note 2, $V_{\text{CE (ON)}}$ n denotes the conduction voltage drop of the corresponding channel, where n = 1,2,3; I_{C} n denotes the average load current of the corresponding channel, where n = 1,2,3; V_{IN} n denotes the average value of the signal input high level of the corresponding channel, where n = 1,2,3; I_{IN} n denotes the average value of the signal input current of the corresponding channel, where n = 1,2,3.

Wade Semiconductor Co,LTD

Rev : V1.1

www.wadesemi.com 2/4

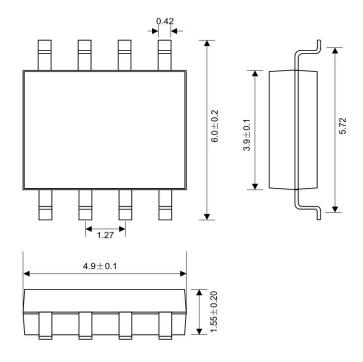

⁽²⁾ T_J Junction temperature indicating circuit operation, T_A Indicates the ambient temperature at which the circuit operates.

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Units
On-state Input Voltage	V _{I(ON)}	V _{CE} =2V, I _C =200mA		1.9	2.4	V
		V _{CE} =2V, I _C =250mA		2.0	2.7	
		V_{CE} =2V, I_{C} =300mA		2.1	3	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	V _I =2.4V I _C =30mA		0.78		V
		V _I =2.4V I _C =60mA		0.82		
		V _I =2.4V I _C =120mA		0.9		
		V _I =2.4V I _C =240mA		1.1		
		V _I =2.4V I _C =3500mA		1.25		
Input Current	Ĭŗ	VI=5V I _C =200mA		2.7	4	mA
Clamp Forward Voltage	V _F	IF=200mA		1.4	1.6	V
Collector Cutoff Current	I _{CEX}	V _{CE} =50V, II=0			50	μΑ
Collector Breakdown Voltage	V _{CE}	V _{CE} =50V II=0	50			V
Clamp Reverse Current	I _R	V _R =50V			50	μА
Clamp reverse Breakdown voltage	I _R	V _R =50V	50			V
Propagation delay time, low-to-high- level output	t _{PLH}	V_L =12V R_L =45 Ω		0.15	1	μs
Propagation delay time, high-to-low-level output	t _{PHL}	$V_L=12V$ $R_L=45\Omega$		0.15	1	μs

TYPICAL APPLICATION CIRCUIT

Wade Semiconductor Co,LTD


Rev : V1.1

www.wadesemi.com 3/4

PACKAGE DIMENSIONS

SOP-8-225-1.27(unit: mm)

